Double algebraic inequality with geometric interpretation of its right hand side.
https://www.linkedin.com/feed/update/urn:li:activity:6708641381012828160
Let $x, y$, and $z$ be nonnegative real numbers such that $x^{2}+y^{2}+z^{2}+x y z=4$.
Prove that $0 \leq x y+y z+z x-x y z \leq 2$.

## Solution by Arkady Alt, San Jose, California, USA.

Since by AM-GM inequality $4-x y z=x^{2}+y^{2}+z^{2} \geq 3\left(x^{2} y^{2} z^{2}\right)^{1 / 3} \Leftrightarrow$
$3(x y z)^{2 / 3}+x y z-4 \leq 0 \Leftrightarrow\left((x y z)^{1 / 3}-1\right)\left((x y z)^{1 / 3}+2\right)^{2} \leq 0 \Leftrightarrow x y z \leq 1$.
and $x y+y z+z x \geq 3\left(x^{2} y^{2} z^{2}\right)^{1 / 3} \geq 3 x y z$ then $x y+y z+z x-x y z \geq 2 x y z \geq 0$.
Note that $x y+y z+z x-x y z \leq 2$ holds if at least one of the $x, y, z$ equal
zero. Indeed, let $z=0$. Then $x^{2}+y^{2}=4$ implies $x y \leq 2$ since $x y \leq \frac{x^{2}+y^{2}}{2}$.
Thus, for further we can assume $x, y, z>0$.
Since all positive solutions of equation $x^{2}+y^{2}+z^{2}+x y z=4$ can be represented in the form $x=2 \cos \alpha, y=2 \cos \beta, z=2 \cos \gamma$, where $\alpha, \beta, \gamma \in(0, \pi / 2)$ and $\alpha+\beta+\gamma=\pi$ then inequality $x y+y z+z x-x y z \leq 2$ becomes $4 \sum \cos \alpha \cos \beta-8 \cos \alpha \cos \beta \cos \gamma \leq 2 \Leftrightarrow$ (1) $2 \sum \cos \alpha \cos \beta-4 \cos \alpha \cos \beta \cos \gamma \leq 1$.

Let $A B C$ be some acute triangle with angles $\alpha, \beta, \gamma$ and let $R, r, s$ be, respectively, circumradius, inradius and semiperimeter of $\triangle A B C$.
Since $\cos \alpha \cos \beta \cos \gamma=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$ and $\sum \cos \alpha \cos \beta=\frac{s^{2}+r^{2}-4 R^{2}}{2 R^{2}}$ inequality (1) becomes

$$
\frac{s^{2}+r^{2}-4 R^{2}}{2 R^{2}}-\frac{s^{2}-(2 R+r)^{2}}{R^{2}} \leq 1 \Leftrightarrow s^{2}+r^{2}-4 R^{2}-2\left(s^{2}-(2 R+r)^{2}\right) \leq 2 R^{2}
$$

and we have $2 R^{2}+2\left(s^{2}-(2 R+r)^{2}\right)-\left(s^{2}+r^{2}-4 R^{2}\right)=s^{2}-2 R^{2}-8 R r-3 r^{2} \geq 0$, because $2 R^{2}+8 R r+3 r^{2} \leq s^{2}$ (Walker's Inequality for acute angled triangle).
Thus, for $x, y, z>0$ such that $x^{2}+y^{2}+z^{2}+x y z=4$ inequality $x y+y z+z x-x y z \leq 2$ can be considered as algebraic equivalent of Walker's Inequality.

